博客
关于我
一、人工智能数学基础——线性代数
阅读量:377 次
发布时间:2019-03-05

本文共 1226 字,大约阅读时间需要 4 分钟。

向量空间与线性代数基础

1 向量空间

1.1 定义与例子

向量空间是定义了加法和数乘运算的集合,这些运算满足结合律、交换律和分配律。例如,在二维空间中,向量可以表示为坐标点,如$(x, y)$。

1.2 向量的运算

向量的加法和数乘是向量空间的基本运算。向量加法对应于平行四边形法则,数乘对应于向量的缩放。

1.3 向量组的线性组合

向量组的线性组合是通过对每个向量乘以标量再相加得到的结果。线性组合可以表示为$ax_1 + bx_2 + cx_3$,其中$a$、$b$、$c$是标量。

1.4 向量组的线性相关性

向量组线性相关意味着存在不全为零的标量,使得线性组合结果为零向量。例如,若向量$a$、$b$、$c$满足$a + 2b + 3c = 0$,则向量组线性相关。

2 内积与范数

2.1 内积的定义

内积是两个向量的点积结果,计算公式为$a \cdot b = a_1b_1 + a_2b_2 + \dots + a_nb_n$。

2.2 范数的定义

范数是向量空间中向量的长度度量,常见的范数有欧几里得范数和曼哈顿范数。

2.3 内积的几何解释

内积也可以理解为向量的投影乘以另一个向量的模长,即$a \cdot b = |a||b|\cos\theta$,其中$\theta$是两个向量之间的夹角。

3 矩阵与线性变换

3.1 矩阵的定义与例子

矩阵是线性变换在基向量上的数值描述,例如:$$A = \begin{pmatrix}1 & 2 \3 & 4\end{pmatrix}$$

3.2 线性变换的定义

线性变换是指保持向量加法和数乘运算的变换,例如矩阵变换。

3.3 矩阵的数值描述

矩阵可以通过选定基向量将线性变换表示为矩阵形式,矩阵的行列式表示变换的面积缩放倍数。

3.4 矩阵的运算

矩阵加法和数乘遵循分配律和结合律,矩阵乘法则用于描述向量间的线性变换。

3.5 矩阵的转置

矩阵转置是将行与列交换,用于改变矩阵的形状。

3.6 矩阵的行列式

行列式用于判断矩阵是否可逆,并表示变换的面积缩放倍数。

3.7 逆矩阵

逆矩阵是可逆矩阵的乘积,使得乘积为单位矩阵。

3.8 求解线性方程组

通过矩阵的行变换或高斯消元法求解线性方程组。

4 特征值与特征向量

4.1 定义与例子

特征值是矩阵在变换后的特征方向上的缩放系数,特征向量是对应于特征值的向量。

4.2 对称矩阵与正定矩阵

对称矩阵的特征值为实数,正定矩阵的所有特征值均为正数。

4.3 相似矩阵与对角化

相似矩阵是通过基变换得到的矩阵,相似矩阵可以对角化。

5 二次型

5.1 定义与例子

二次型是通过对称矩阵表示的向量间的关系,如$x^T A x$,其中$A$是对称矩阵。

6 本章要点总结

向量空间定义了线性代数的基础,内积与范数描述了向量间的几何关系。矩阵与线性变换将这些概念扩展到更高维度,特征值与特征向量揭示了矩阵的本质,二次型则用于研究向量间的二次关系。

转载地址:http://tvag.baihongyu.com/

你可能感兴趣的文章
nacos集群节点故障对应用的影响以及应急方法
查看>>
nacos集群配置详解
查看>>
nagios 实时监控 iptables 状态
查看>>
nagios+cacti整合
查看>>
Nagios介绍
查看>>
nagios利用NSCient监控远程window主机
查看>>
nagios安装文档
查看>>
nagios服务端安装
查看>>
Nagios自定义监控脚本
查看>>
name_save matlab
查看>>
Nami 项目使用教程
查看>>
Nancy之基于Nancy.Hosting.Aspnet的小Demo
查看>>
NAND NOR FLASH闪存产品概述
查看>>
nano 编辑
查看>>
NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
查看>>
Nash:轻量级、安全且可靠的脚本语言
查看>>
NAS、SAN和DAS的区别
查看>>
NAS个人云存储服务器搭建
查看>>
NAT PAT故障排除实战指南:从原理到技巧的深度探索
查看>>
nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
查看>>